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Abstract

3D question answering is a young field in 3D vision-
language that is yet to be explored. Previous methods are
limited to a pre-defined answer space and cannot gener-
ate answers naturally. In this work, we pivot the ques-
tion answering task to a sequence generation task to gen-
erate free-form natural answers for questions in 3D scenes
(Gen3DQA). To this end, we optimize our model directly
on the language rewards to secure the global sentence se-
mantics. Here, we also adapt a pragmatic language un-
derstanding reward to further improve the sentence quality.
Our method sets a new SOTA on the ScanQA benchmark
(CIDEr score 72.22/66.57 on the test sets). The project code
can be found at: https://github.com/MunzerDw/
Gen3DQA.git.

1. Introduction

Visual question answering is a fundamental task in
vision-language understanding [2, 3, 40, 41, 55]. Unlike
dense captioning [11,21,23,53] or visual grounding [7,8,15,
18,19,22,57,58], question answering requires the intelligent
system to understand the joint context of the question (lan-
guage) and scene (vision) to interact with the environment
by providing answers. While visual question answering on
images has been extensively researched, question answer-
ing on 3D scenes is yet to be explored.

The seminal work such as ScanQA [4] relies on a two-
branch architecture for encoding both modalities of the in-
put (point cloud and question) before fusing them into a
joint vector representation. Then, an answer is predicted
among a predefined answer space using such multimodal
feature. Along with the answer classification, a bounding
box is predicted to localize the object referred to in the ques-
tion. Another competitive method, CLIP-guided [32], trans-
fers 2D prior knowledge to the 3D domain via a contrastive
learning scheme using CLIP features [37]. However, afore-
mentioned baseline methods are limited to a predefined an-
swer space, which consequently hinders the capability of
interacting with human users.

Figure 1. We propose Gen3DQA, an end-to-end transformer-
based architecture for generating natural answers for questions in
3D scenes. Our method directly optimizes the global semantics of
the generated sentences via the language rewards.

To tackle this challenge, we propose a transformer-based
architecture to generate, rather than predict, free-from an-
swers for questions in 3D environments. Using reinforce-
ment learning, we directly train our model with a language
reward to secure the global semantics of the generated sen-
tences, as shown in Figure 1. To this end, we utilize the pol-
icy gradient method [38] to approximate sampled gradients
through our end-to-end architecture. To further ensure the
correctness of the generated answers, we introduce an addi-
tional helper reward that encourages the model to reversely
reconstruct the questions from the respective answers. Our
method outperforms the state-of-the-art methods for the im-
age captioning metrics on the ScanQA [4] benchmark. We
summarize our contributions as follows:

• We propose an end-to-end transformer-based archi-
tecture for the task of 3D visual question answering,
which deals with ambiguous contexts and generates
free-form natural answers.

• We present a reinforcement-learning-based training
objective that directly optimizes the global semantics
of the generated sentences. We also incorporate a
pragmatic helper reward that encourages correct recon-
struction of the question from the generated answer,
which further improves answer quality.

• We conduct extensive experiments and ablation studies
to show the effectiveness of our method. Our method
sets a new SOTA performance on the ScanQA bench-
mark [4] (CIDEr score 72.22/66.57 on the test sets).
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2. Related Work
3D Vision-Language. One of the first works to combine 3D
scenes and natural language is the ScanRefer [7] bench-
mark, which introduces the task of visual grounding in
ScanNet [14] scenes. The ScanRefer [7] dataset has more
object categories than originally set in ScanNet [14]. The
authors design a two branch model where one branch en-
codes the scene with a PointNet++ [36] backbone and the
other the reference sentence with a GRU [12]. A fusion
module takes in both encoded modalities to predict the fi-
nal target object. Shortly after, the reverse task of dense
captioning in 3D scenes is introduced [11]. The same back-
bone is used in addition to a graph module and attention
mechanism to predict the bounding boxes and generate their
descriptions. D3Net [9] combines both tasks into a speaker-
listener architecture, where the speaker takes in predicted
object proposals from a detector backbone and generates a
caption sentence for each one. The generated captions are
passed to the listener, which grounds the target objects. The
method employs the REINFORCE [50] algorithm for se-
quence generation [38] to train both modules jointly.
Visual Question Answering. Question answering [41] on
images has been extensively researched, where most mod-
els approach the problem as a classification task [3, 20, 45,
54,56]. In addition, several works focus on VQA with video
as input [25,39,51,60]. Today, large transformer based pre-
trained models have shown the ability to achieve superior
performance on the VQA task [6, 10, 16, 29, 41, 42, 44, 49].
However, in the 3D domain, it is still unexplored. One of
the first works is introduced by Azuma et al. [4]. Based
on ScanNet [14] scenes and ScanRefer [7] object descrip-
tions, the authors create the ScanQA dataset with the addi-
tional task of grounding the target object(s) with a bound-
ing box in the scenes. Their baseline architecture consists
of two encoder branches, one of which utilizes a Point-
Net++ [36] backbone to encode the scene into object pro-
posals. A transformer based fusion module [59] produces
a final vector from which the answer is predicted. Further-
more, Prelli et al.achieve the current state-of-the-art on the
ScanQA [4] benchmark with their method where they ap-
ply knowledge from the 2D domain into the 3D domain.
They pretrain a CLIP [37] encoder to align the scene fea-
tures with the image and question embeddings. In the next
training step, the CLIP module is used to encode the ques-
tion sequence. Similarly, the answer is predicted from the
final <end> token representation of the question. In con-
trast to previous works, we solely train on the 3D scenes
with SoftGroup [48] as a backbone. Apart from a trans-
former encoder, we also implement a transformer decoder
to generate rather than predict the answer.
Reinforcement Learning for Sequence Generation. Ren-
nie et al. [38] introduce reinforcement learning to the task
of image captioning where they utilize the REINFORCE al-

gorithm [50] and optimize their model directly on the non
differentiable CIDEr [47] metric. Their LSTM [17] model
is seen as the ”agent” that interacts with the ”environment”,
which is the words and image features. The network acts as
the ”policy” that determines the ”action” taken by the agent,
which in this case is the prediction of the next word. Fol-
lowing an action, the model updates its ”state”, i.e. weights.
Once a sentence is generated, the model receives a ”re-
ward” in form of the CIDEr score of the generated sen-
tence. Vedantam et al. [13] apply the same training method
on their transformer based architecture with a small varia-
tion, where they generate k sentences with the beam search
algorithm and baseline each sentence on the average reward
of all sentences. Luo et al. [30] introduce a better variant
of the original self-critical sequence training (SCST [38])
where they sample k sentences (using random sampling)
and calculate for each sentence the average reward of the
rest as a baseline.

3. Method
In this section, we explain our model architecture (Figure

2) and training method. The input of our model is a 3D point
cloud with RGB and normals features. The second input is
the question sequence, and the output is a token sequence
of the generated answer. Overall, our model can be divided
into 3 segments: SoftGroup, transformer encoder-decoder,
and object localization. Our training method consists of 3
stages, which we will explain in detail in Section 3.2.

3.1. Model

SoftGroup. Instead of relying on a pointwise method for
the backbone network [35] like in previous works [4, 7, 11,
32], we employ the 3D-sparse-convolution based method
SoftGroup [48] to extract denser semantic information of
the object proposals. This method has shown better perfor-
mance and speed on the object detection task [48]. In ad-
dition, the instance masks of the generated object proposals
offer a unique identity for objects and thus provide better
scene understandings for the answers. With that, we gener-
ate P semantically rich object proposals V ∈ RP×32 from
the point cloud scene. To match the dimension of our ques-
tion token embeddings, we train a linear layer that expands
the object proposals to V ′ ∈ RP×300.
Transformer Encoder-Decoder. We encode our W ques-
tion tokens with GloVe [34] embeddings as Q ∈ RW×300.
Then, we add positional encodings to both of our modalities
representations. For the question embeddings, we follow
the original transformer positional encoding [46]. As for
the object proposals, we add the normalized center points
Z ∈ RP×3 to the last 3 dimensions of each (expanded) ob-
ject proposal. Transformers have shown great performance
when it comes to sequence-to-sequence generation. There
are several approaches to encoding two sequences of differ-
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Figure 2. Overview of our model architecture. The input scene is encoded into object proposals V ′ with SoftGroup [48]. The question and
answer tokens are turned into word embeddings (Q and T ) with GloVe [34]. The question sequence and object proposals are concatenated
as a single sequence and fed into the transformer encoder. The contextualized sequence is then forwarded to a transformer decoder as keys
and values, while the embedded answer sequence is passed as query during training with XE loss. During inference, only the <start>
token embedding is used as a query in the decoder to begin the sentence. Best viewed in color.

ent modalities with transformers. Following the approaches
mentioned in the survey by Xu et al. [52], we choose early
concatenation, which enables the model to equally encode
the scene information into the question and the question in-
formation into the scene. This method has shown to well
preserve the global multi-modal context [27, 43, 52], which
is necessary for both answer generation and object localiza-
tion tasks. Hence, we concatenate both sequences into one
sequence S ∈ RL×300 where L = P +W and feed it into a
two-layer transformer encoder. The sequence S acts as the
keys, values and query and is encoded into one sequence
S′ ∈ RL×300 containing the contextualized object propos-
als and question embeddings. The contextualized sequence
is fed into a two-layer transformer decoder as keys and val-
ues. The target sequence containing GloVe word embed-
dings of the answer T ∈ RA×300 is used as the query.

Object Localization. After encoding the full multi-modal
sequence, we feed the question-aware object proposals into
an MLP to predict their confidence scores sconf ∈ RP×1.
The object proposal with the highest confidence score is
considered as our target object.

3.2. Training

First, we pretrain SoftGroup [48] with the ScanRefer [7]
object classes. We experiment with different input fea-
tures and find that RGB + normals features result in the
best overall scores. Our object detection scores from Soft-
Group [48] can be found in the appendix. Since the for-
ward pass of SoftGroup [48] is significantly more time-
consuming than the forward pass of our language model, we
precompute the object proposals from the pretrained Soft-
Group [48] model and save them on disk before using them
for our visual-language model. During prediction on the test
sets, we re-activate SoftGroup [48] and do the full forward
pass. SoftGroup [48] is trained end-to-end on a multitask
loss Lsoftgroup, which encompasses the total loss for the first
training stage.

Next, we train our question answering model
on word level cross entropy (XE) loss: Lans =
−
∑

t∈T

∑
z∈Z yt,zlog(ŷt,z) where T is the ground

truth answer including the <end> token and Z is the
training vocabulary. yt,z has the value 1 when the current
ground truth token t matches the vocabulary token z and
0 otherwise. ŷt,z is the predicted probability of the token
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z in the Softmax output for the word at step t. The model
is trained with the teacher forcing scheme, where we pass
the ground truth previous words as the query to predict
the next word at each time step. Simultaneously, we train
our object localization branch on cross entropy loss Lloc,
similar to [4, 7]. Thus, our total loss for the second training
stage is L = Lans + Lloc.

After our question-answering model converges on the
CIDEr score accuracy, we drop the word level XE loss
Lans and switch to reinforcement learning, while keeping
the object localization loss Lloc. Here, we apply the self-
critical sequence training [38] method and train directly on
the CIDEr score. We treat our transformer model as the
”agent”, the question & answer words and object proposals
as the ”environment”, our network parameters as the ”pol-
icy” pθ, the prediction of the next word as the ”action”, and
the CIDEr score of the generated answer as the ”reward”.
Instead of sampling the answer sequence like in [38], we
generate it using test-time greedy decoding to get wg where
wg = (wg

1 , ..., w
g
T ) and wg

t is the word with the maximum
likelihood at time step t. Our loss can be expressed as the
negative expected reward:

Lcider(θ) = −Ewg∼pθ
[r(wg)] (1)

where r(.) is the reward function (CIDEr score). As for the
baseline, we generate k answers using beam search decod-
ing. We keep track of the top-k answers and predict the
next word until we reach the <end> token for all top k se-
quences. We take the average reward of the k answers as
the baseline reward rbVQA. In addition to the reward from
the generated answer, we also train a Visual Question Gen-
eration (VQG) module by simply switching the input (ques-
tion) and output (answer) of our transformer model. Since
we treat the VQA task as a sequence generation problem,
our model can be easily switched to the inverse task. Once
we generate an answer from the VQA module, we feed it
into the frozen VQG module to greedily generate a question
qg . The same thing is also done with the generated baseline
answers, which results in k baseline questions. Similar to
VQA, we get the CIDEr scores for the generated question
rgVQG and for the baseline questions rbVQG. With that, we can
express the gradient of our loss as:

∇θLcider(θ) = −((rgVQA − rbVQA) + (rgVQG − rbVQG))∇θlogpθ(w
g) (2)

where rgVQA is the reward for the generated answer wg . Dur-
ing our experiments, we find that using greedy decoding for
the VQA baseline, as in [38], does not yield any improve-
ment, since the sampled sentence in our case usually has a
worse CIDEr score than the answer generated with greedy
decoding. Thus, we experiment with greedy decoding for
generating the answer and sampling for the baseline. How-
ever, we also find that sentences generated with beam search

have worse results than the ones generated greedily. There-
fore, we conduct experiments with using beam search as our
baseline and see a noticeable improvement. When using a
beam size of 2, the reward difference between the generated
answer and the average of the baseline answers becomes too
small and crashes the accuracies after few epochs. Increas-
ing the beam size to 3 widens the difference in rewards and
stabilizes our training. The final total loss for the third train-
ing stage is L = Lcider + Lloc.

3.3. Inference

During inference, we re-activate SoftGroup [48] to gen-
erate object proposals. As for the transformer decoder, we
apply greedy decoding to generate the answer sequence be-
ginning with the token <start>. Once we reach the <end>
token, our decoder stops. We determine the confidence
score for each object proposal with the object localization
branch and pick the one with the highest value as our target
object. The object class of the target object is determined
by the classification branch of SoftGroup [48].

4. Experiments
4.1. Data

We train and test our model on the ScanQA [4] dataset.
The 3D scenes are from the ScanNet [14] dataset, while
the questions are based on the ScanRefer [7] object de-
scriptions. Hence, the categories of the objects in ques-
tion are from the ScanRefer [7] classes. Moreover, we
treat questions with multiple answers as multiple training
samples, where every sample contains the same question
and one of the answers. This introduces 952 additional
training samples. Furthermore, we evaluate our model
on both test sets of ScanQA [4] on the image captioning
metrics BLUE-1 [31], BLEU-4 [31], ROUGE [26], ME-
TEOR [5] and CIDEr [47] and exclude the EM@1 and
EM@10 accuracies since we do not have answer classifi-
cation in our model. Our scores are calculated by uploading
our question-answering results to the ScanQA [4] bench-
mark server 1, where at the time of writing the SPICE [1]
score is returning with the value of 0.0 and is thus not in-
cluded.

4.2. Implementation Details

We follow the implementation of MINSU3D 2 for train-
ing SoftGroup [48] and change the class mappings in
the data preparation phase to fit the ScanRefer [7] object
classes. We use Adam [24] optimizer for training our
language model with a learning rate of 8e-5 when train-
ing on XE loss and 2e-5 when training with reinforcement

1https://eval.ai/web/challenges/challenge-page/
1715/overview

2https://github.com/3dlg-hcvc/minsu3d
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Model BLEU-1 BLEU-4 ROUGE METEOR CIDEr
Test w/ object IDs
ScanQA [4] 31.56 12.04 34.34 13.55 67.29
CLIP-guided [32] 32.72 14.64 35.15 13.94 69.53
Gen3DQA (XE loss) 35.24 10.79 33.50 13.61 64.83
Gen3DQA 39.30 12.24 35.78 14.99 72.22
Test w/o object IDs
ScanQA [4] 30.68 10.75 31.09 12.59 60.24
CLIP-guided [32] 32.70 11.73 32.41 13.28 62.83
Gen3DQA (XE loss) 35.08 10.62 30.99 12.87 60.05
Gen3DQA 38.07 11.61 33.03 14.28 66.57

Table 1. Image captioning metrics scores of previous methods and ours on the ScanQA [4] test benchmark with and without object IDs. At
the time of evaluation on the benchmark website, the SPICE [1] score is not available.

Acc@0.5
ScanQA [4] 15.42
CLIP-guided [32] 21.22
Gen3DQA 23.79

Table 2. Object localization accuracy Acc@0.5 of previous meth-
ods and ours on the ScanQA [4] validation set.

learning. In both cases, we apply cosine annealing [28]
for scheduling. We train with a batch size of 64 on a
GeForce RTX 2080 Ti. Our models are implemented in Py-
Torch [33]. For data augmentation, we randomly replace
one random word in the question with the <unk> token.
When training on XE loss, our model converges on the
CIDEr score after 80,000 iterations. As for training with
the REINFORCE algorithm, our best model converges af-
ter 100,000 iterations.

4.3. Quantitative Analysis

We show in Table 1 our final results in comparison to
ScanQA [4] and CLIP-guided [32]. Our method outper-
forms previous works on the conditional image caption-
ing metrics and especially on the more challenging CIDEr
score. Unlike the CLIP-based method [32], our model only
requires 3D point cloud data to train. By training directly
on the CIDEr score, our model performance is significantly
improved on the rest of the metrics too.

Furthermore, we also look at the object localization task
on the validation set in comparison to previous methods (Ta-
ble 2). Even though the current state-of-the-art trains with
additional image data, our model achieves a noticeable im-
provement on the Acc@0.5 accuracy. We also see that our
early concatenation method is superior to the fusion module
of ScanQA [4] in multi-modal context understanding. With
that, our method presents a stronger understanding of the
scene and question and can generate context-aware answers
naturally while localizing relevant objects significantly bet-

ter than previous methods.

4.4. Qualitative Analysis

In Figure 3 we showcase samples from the test set (with
object IDs) where our model generates better answers than
ScanQA [4] predicts, while localizing a meaningful target
object. Overall, we see that our model generates longer
answers that contain more information. In fact, compared
to ScanQA [4], the average number of words in an answer
from our model is 1.87/1.92 (test set with and without ob-
ject IDs) compared to ScanQA [4] with 1.41/1.47. Further-
more, we show in Figure 3 samples from the validation set
where our model performs better object localization than
ScanQA [4] while also generating the correct answer. We
see in the samples that our model performs well when the
question requires spatial awareness and can also extract de-
tails about object types and looks.

4.5. Ablation Studies

Does multi-object localization help? In ScanQA [4] the
authors experiment with training the object localization
branch on binary cross entropy (BCE) loss. This enables
the model to decide for each object whether it should be
targeted or not, allowing multiple objects to be selected.
Overall, we don’t see a clear performance improvement in
our model from targeting multiple objects (Table 3). We
also conduct an experiment where we train our model with-
out the object localization loss and see that by training our
model to localize the target object, it becomes better at gen-
erating answers.
Does VQG reward improve answer generation? We hy-
pothesize in the beginning that by generating a better an-
swer, it becomes easier to regenerate the original question
from it. Hence, we train a question-generation module
(VQG) and use it to generate a question from our gener-
ated answer during reinforcement learning. We then add
the CIDEr score of the generated question as an additional
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Figure 3. Example questions and answers from the test set with object IDs (top) and the validation set (bottom). We compare the results of
our model (blue) to ScanQA [4] (red) and the ground truth (GT) (green). Below every image is the predicted or generated answer. Since
we do not axis-align our scenes, the bounding boxes in our model look tilted. We include more examples in the appendix. Best viewed in
color.

Model BLEU-1 BLEU-4 ROUGE METEOR CIDEr
Gen3DQA (single object) 35.4 10.52 33.39 13.62 64.91
Gen3DQA (multiple objects) 36.02 10.21 32.84 13.68 64.51
Gen3DQA (w/o object localization) 34.29 10.02 31.2 12.99 59.35

Table 3. Scores of our model trained on XE loss once with targeting a single object, once multiple objects, and once without object
localization at all. Evaluation is done on the validation set.

reward. The results in Table 4 show that training with the
additional question generation reward yields better answer
generation scores.

5. Conclusion and Future Work

In this work, we propose a new architecture for the task
of 3D visual question answering to generate free-form an-
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Model BLEU-1 BLEU-4 ROUGE METEOR CIDEr
Valid
Gen3DQA (w/o VQG reward) 39.12 13.2 35.48 14.89 71.39
Gen3DQA (w/ VQG reward) 39.53 12.7 35.97 15.11 71.97
Test w/ object IDs
Gen3DQA (w/o VQG reward) 38.89 12.67 35.35 14.82 71.09
Gen3DQA (w/ VQG reward) 39.30 12.24 35.78 14.99 72.22
Test w/o object IDs
Gen3DQA (w/o VQG reward) 37.61 12.00 32.57 14.09 65.58
Gen3DQA (w/ VQG reward) 38.07 11.61 33.03 14.28 66.57

Table 4. Scores of our model trained with reinforcement learning with and without the additional reward of Visual Question Generation
(VQG).

swers. We directly train our model on the CIDEr metric us-
ing a version of the REINFORCE algorithm [38,50]. In ad-
dition, we introduce the inverse task of question generation
to enhance our question-answering model during reinforce-
ment learning. Our experiments and results show that our
method outperforms the current state-of-the-art on the im-
age captioning metrics of the ScanQA [4] benchmark. For
future work, we encourage the research community to fur-
ther explore the dual tasks of question answering and gen-
eration. For instance, we suggest jointly training both tasks
without freezing any weights. We also look forward to fu-
ture works to explore and develop better answer generation
models instead of answer classification ones for questions
in 3D environments.
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Supplementary Material

This supplementary material provides additional experi-
ment results and evaluations, such as the performance of the
SoftGroup [48] backbone trained on ScanRefer [7] classes
(Section A.1). We also include the question-answering
scores on the different types of questions in comparison to
ScanQA [4] (Section A.2). Apart from that, we show addi-
tional ablation studies in Section B and further qualitative
analysis results in Section C.

A. Additional Quantitative Analysis Results

A.1. SoftGroup Trained on ScanRefer Classes

We show our evaluation results (Table A.1) of Soft-
Group [48] trained on ScanNet [14] scenes with different
input features with ScanRefer [7] object classes. We see
that having RGB and normals features yields the best over-
all scores.

A.2. Question Types

We compare our results with the ScanQA [4] baseline on
the different types of questions in the validation set (Table
A.2). Since the question types split is not publicly available,
we split the validation set based on the beginning words of
every question, as mentioned in the ScanQA [4] paper. With
that, we get the same number of questions as ScanQA [4]
for each type. Overall, our model outperforms the base-
line in all question types on all image captioning metrics
except ROUGE [26]. The biggest difference in scores can
be observed in the ”other” category, where our model has a
BLEU-4 score of 16.77 compared to 0.00 of the baseline.

B. Additional Ablation Studies

Do target embeddings help? Our aim in this experi-
ment is to pass a signal from our object localization branch
to the decoder by adding information about the target object
proposal. Therefore, we train 0 & 1 embeddings and add the
1 embedding vector to the encoded object proposal with the
highest confidence score and the 0 embedding vector to the
rest. Our results in Table B.1 show that there is no signif-
icant improvement when using the target embeddings. We
assume the reason is the low object localization accuracy of
our model (23.79 on Acc@0.5), because of which it does
not get an accurate signal most of the time.

Does using beam search as a basesline for SCST help?
In the SCST paper the authors use the greedy decoding out-
put for the baseline reward. In our case, the sampled sen-
tences are almost always worse than the ones generated by
greedy decoding. As our model tries to make the reward
gap positive, it becomes much worse after 5 epochs, where
the CIDEr score goes below 22. Therefore, we experiment

with switching the sampled sentence and the greedily gen-
erated one and report our findings in Table B.2 (Gen3DQA
(SCST switched)). As can be seen, using beam search for
the baseline reward performs better.

C. Additional Qualitative Analysis Results
In Figures C.1 and C.2 we show additional examples of

our model compared to ScanQA [4]. We see that while
our model localizes meaningful targets, it generates longer
and/or better answers than ScanQA [4].
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Point cloud features AP AP 50% AP 25% Bbox AP 50% Bbox AP 25% AR RC 50% RC 25%
xyz 40.4 60.6 72.1 54.3 66.8 49.8 72.1 83.6
xyz + rgb 40.6 60.9 74.2 53.5 68.1 49.7 71.6 84.3
xyz + rgb + normals 42.0 62.2 74.5 57.1 69.3 51.3 73.6 83.8

Table A.1. Evaluation scores of SoftGroup [48] trained with ScanRefer [7] object classes. We report our scores on the ScanNet [14]
validation set.

Model BLEU-1 BLEU-4 ROUGE METEOR CIDEr
Object
ScanQA [4] 23.94 0.00 50.05 10.62 26.01
Gen3DQA 27.27 0.00 27.23 11.97 55.13
Color
ScanQA [4] 43.92 0.00 84.42 22.61 47.68
Gen3DQA 45.76 0.00 48.77 22.92 83.22
Object Nature
ScanQA [4] 41.65 0.00 73.26 16.54 41.61
Gen3DQA 41.63 0.00 39.51 17.61 73.72
Place
ScanQA [4] 28.78 9.55 57.00 11.49 28.19
Gen3DQA 43.11 12.32 38.32 14.81 72.74
Number
ScanQA [4] 44.29 0.00 72.15 19.16 46.05
Gen3DQA 51.97 0.04 50.18 20.99 74.93
Other
ScanQA [4] 22.26 0.00 45.39 9.96 26.30
Gen3DQA 37.52 16.77 30.40 14.78 64.11
Total
ScanQA [4] 29.47 9.55 32.37 12.60 61.66
Gen3DQA 39.53 12.70 35.97 15.11 71.97

Table A.2. Image captioning metrics scores for different types of questions in the ScanQA [4] validation set.

Model BLEU-1 BLEU-4 ROUGE METEOR CIDEr
Gen3DQA (w/o target embeddings) 35.4 10.52 33.39 13.62 64.91
Gen3DQA (w/ target embeddings) 34.65 11.07 33.31 13.57 64.71

Table B.1. Image captioning metrics scores of our model trained on XE loss once with and once without target embeddings. Evaluation is
done on the validation set.

Model BLEU-1 BLEU-4 ROUGE METEOR CIDEr
Gen3DQA (SCST switched) 38.25 13.01 35.36 14.82 70.96
Gen3DQA (w/o VQG) 39.12 13.2 35.48 14.89 71.39

Table B.2. Experiment results on the validation set. Models are trained without VQG reward.
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Figure C.1. Example questions and answers from the test set without object IDs. We compare the results of our model (blue) to ScanQA [4]
(red). Below every image is the predicted or generated answer. Since we do not axis-align our scenes, the bounding boxes in our model
look tilted. Best viewed in color.
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Figure C.2. Example questions and answers from the test set with object IDs. We compare the results of our model (blue) to ScanQA [4]
(red). Below every image is the predicted or generated answer. Since we do not axis-align our scenes, the bounding boxes in our model
look tilted. Best viewed in color.

13


	. Introduction
	. Related Work
	. Method
	. Model
	. Training
	. Inference

	. Experiments
	. Data
	. Implementation Details
	. Quantitative Analysis
	. Qualitative Analysis
	. Ablation Studies

	. Conclusion and Future Work
	. Acknowledgement
	. Additional Quantitative Analysis Results
	. SoftGroup Trained on ScanRefer Classes
	. Question Types

	. Additional Ablation Studies
	. Additional Qualitative Analysis Results

